I
   
 
   
       
 

Arithmetic and symbol weakness

 

According to a book by Kate Garnett, Ph.D. :

Some learning disabled students have an excellent grasp of math concepts, but are inconsistent in calculating. They are reliably unreliable at paying attention to the operational sign, at borrowing or carrying appropriately, and at sequencing the steps in complex operations. These same students also may experience difficulty mastering basic number facts.

Interestingly, some of the students with these difficulties may be remedial math students during the elementary years when computational accuracy is heavily stressed, but can go on to join honors classes in higher math where their conceptual prowess is called for. Clearly, these students should not be tracked into low level secondary math classes where they will only continue to demonstrate these careless errors and inconsistent computational skills while being denied access to higher-level math of which they are capable. Because there is much more to mathematics than right-answer reliable calculating, it is important to access the broad scope of math abilities and not judge intelligence or understanding by observing only weak lower level skills. Often a delicate balance must be struck in working with learning disabled math students which include:

  1. Acknowledging their computational weaknesses
  2. Maintaining persistent effort at strengthening inconsistent skills;
  3. Sharing a partnership with the student to develop self-monitoring systems and ingenious compensations; and at the same time, providing the full, enriched scope of math teaching.

Many younger children who have difficulty with elementary math actually bring to school a strong foundation of informal math understanding. They encounter trouble in connecting this knowledge base to the more formal procedures, language, and symbolic notation system of school math. The collision of their informal skills with school math is like a tuneful, rhythmic child experiencing written music as something different from what he/she already can do. In fact, it is quite a complex feat to map the new world of written -math symbols onto the known world of quantities, actions and, at the same time to learn the peculiar language we use to talk about arithmetic. Students need many repeated experiences and many varieties of concrete materials to make these connections strong and stable. Teachers often compound difficulties at this stage of learning by asking students to match pictured groups with number sentences before they have had sufficient experience relating varieties of physical representations with the various ways we string together math symbols, and the different ways we refer to these things in words. The fact that concrete materials can be moved, held, and physically grouped and separated makes them much more vivid teaching tools than pictorial representations. Because pictures are semiabstract symbols, if introduced too early, they easily confuse the delicate connections being formed between existing concepts, the new language of math, and the formal world of written number problems.


 

   
Copyright © 2004-2011 by JuniorsWeb.com. All rights reserved.